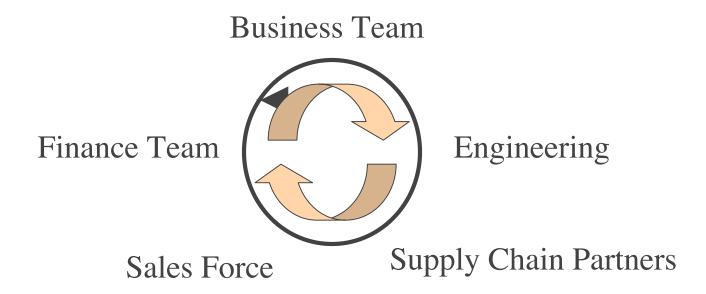


Jacqueline Woo
Georgia Institute of Technology
JacquelineCWoo@yahoo.com


Tord Dennis
Georgia Institute of Technology
tord.dennis@coe.gatech.edu
404.894.7752

Introduction
Collaboration in Business
Collaboration in Universities
Requirements for Collaboration
DCPD John Deere Project
Benefits of Collaboration

Collaboration in Business

The organizational structure of today's businesses require close relationships between interdisciplinary teams for optimal efficiency

Collaboration in Business

Why?

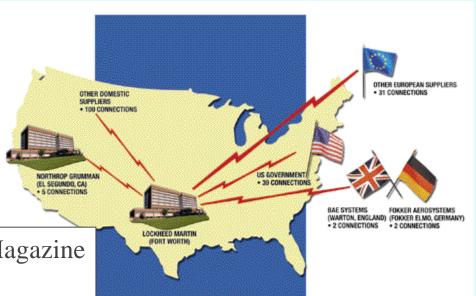
- Increased focus to meet customer needs
- SFaster time-to-market
- SIncrease quality
- SLower costs
- SReduce rework
- SReuse accumulated knowledge
- Share risks

Collaboration in Business

How?

- SWeb based conferencing
- SProduct Lifecycle Management Software
 - TeamCenter UGS PLM SOLUTIONS
 - Enovia -
 - Windchill PTC

Collaborative Product Development in Industry

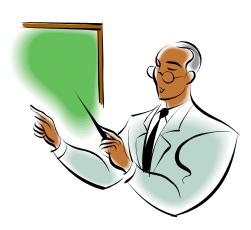

X-35 Joint Strike Fighter

COLLABORATIVE DEVELOPMENT ACROSS 11 TIME ZONES

Uniform tools give Lockheed, its partners, and suppliers the same view of product development

- PDM software CATIA for 3D design
- 1 master database, mirrored at partners, synchronized in real time

Source: Desktop Engineering Magazine
Dec 2002


What is PLM?

"Product Lifecycle Management enables you to marshal the skills, expertise, knowledge, and experience of your entire extended enterprise and apply them to every major stage in your product lifecycle to achieve competitive excellence."

http://www.eds.com/products/plm/

Why PLM in Academia?

- Business is utilizing PLM
 Students need practical experience
 - Co-op
 - Internships
 - Projects

Collaboration in Universities

Accreditation Board for Engineering and Technology (ABET)

Outlines 8 Criterion for Accredited Engineering Programs, including *Criteria 3 - Outcomes and Assessments*, that each graduate must accomplish

Collaboration in Universities

CAPSTONE DESIGN fulfills three of the eleven ABET *Program Outcomes and Assessments (Criteria 3)* including

- San ability to apply knowledge of mathematics, science and engineering
- San ability to design a system, component or process to meet desired needs
- San ability to identify, formulate and solve engineering problems

DCPD John Deere Project

Phase 2 of the Distributed Collaborative Product Development (DCPD) project involves the following Universities

Georgia Institute of Technology
University of Maryland-College Park
University of Illinois Champaign-Urbana
Bentley College

DCPD John Deere Project

Division of Responsibilities

SGeorgia Tech

Primary Mechanical Design Team

Industrial and Systems Design Team

Industrial Design Team

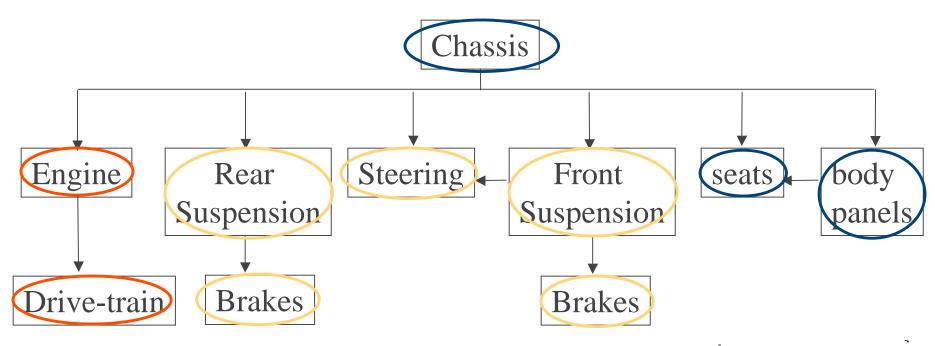
SUniversity of Maryland

Mechanical Design Team

SUniversity of Illinois

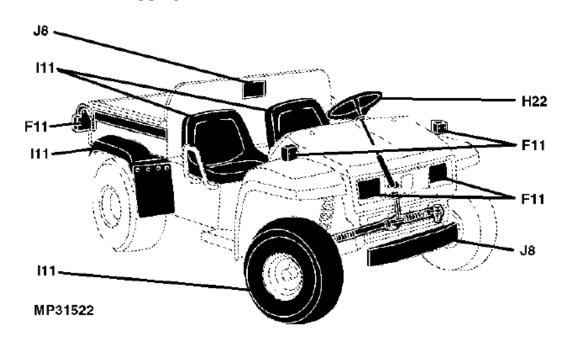
Mechanical Design Team

SBentley College


Operations Research Team

DCPD Mechanical Design Objective

Redesign the John Deere Gator Utility Vehicle for amphibious function



DCPD Industrial Systems Design Objective

Perform cost analysis on the existing system to optimize the efficiency of the manufacturing process

DCPD Industrial Design Objective

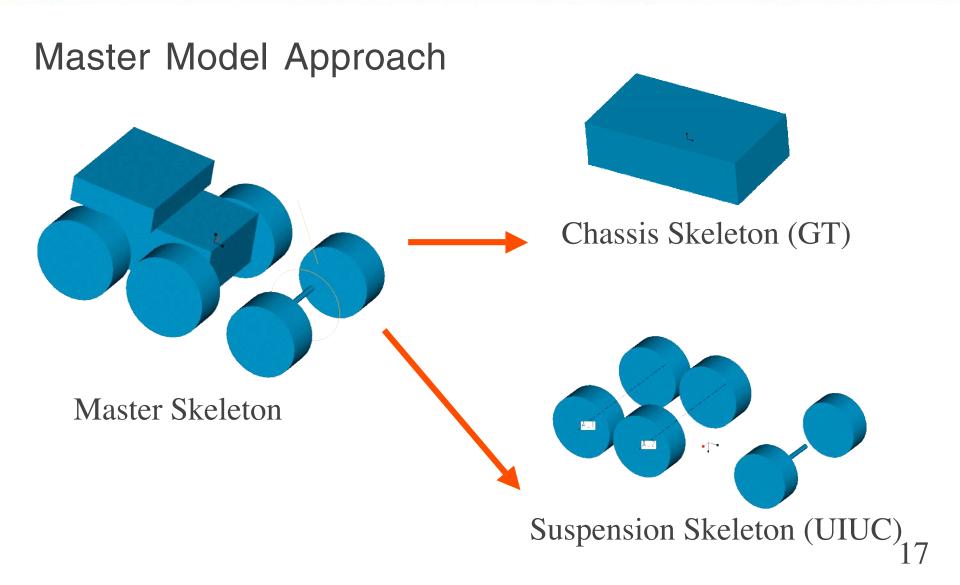
- Optimize the placement of consumer related features on the Amphibious Utility Vehicle
- Make the vehicle aesthetically pleasing

DCPD System Requirements for Collaboration

Standard configuration for all participants:

Master Model Approach

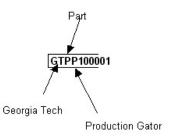
SPart Number Generator


S"New Part" Labeling Standard

SCAD Start Parts

Software configuration files

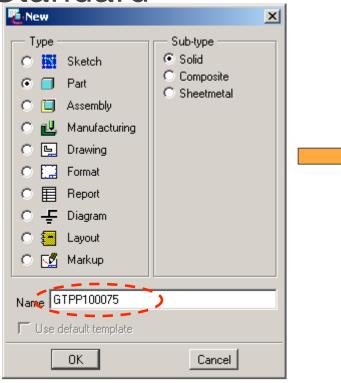
Same version of CAD software

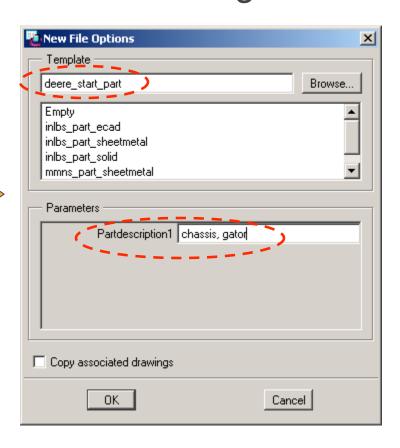

System Requirements for Collaboration

System Requirements for Collaboration

Part Number Generator

Part Number	Part Name	Part Description	Creator	Date Created
GTPP100001	BED	TRUCK	J. Woo	01/05/04
GTPP100002	PANEL, BODY	BENT WING	J. Woo	01/05/04
GTPP100003	PANEL, BODY	BENT WING DRIVER	J. Woo	01/05/04
GTPP100004	Part Name List	ВООТ	J. Woo	01/05/04
GTPP100005	PANEL, BODY	BOTTOM SHELL CURVES	J. Woo	01/05/04
GTPP100006	HUB	FRONT	J. Woo	01/05/04
GTPP100007	TIRE	FRONT	J. Woo	01/05/04
GTPP100008	ARM	FRONT PONTOON MOUNTING	J. Woo	01/05/04
GTPP100009	TANK	FUEL	J. Woo	01/05/04
GTPP100010	FENDER	FRONT	J. Woo	01/05/04
GTPP100011	HOOD	FRONT	J. Woo	01/05/04
GTPP100012	PANEL, BODY	INSTRUMENT	J. Woo	01/05/04
GTPP100013	NUT	LOCK	J. Woo	01/05/04
GTPP100014	NUT	REGULAR	J. Woo	01/05/04
GTPP100015	HUB	PASSENGER SHELL	J. Woo	01/05/04
GTPP100016	Part Name List	PASSENGER SHELL SIDE	J. Woo	01/05/04
GTPP100017	PONTOON	воттом	J. Woo	01/05/04
GTPP100018	PONTOON	angle	J. Woo	01/07/04
GTPP100019	PONTOON	angle 2	J. Woo	01/07/04
GTPP100020	PONTOON	BACK	J. Woo	01/07/04
GTPP100021	PONTOON	FRONT	J. Woo	01/07/04
GTPP100022	PONTOON	SHELL	J. Woo	01/07/04
GTPP100023	PONTOON	TUBE	J. Woo	01/07/04
GTPP100024	PONTOON	MOUNTING ARM	J. Woo	01/07/04
GTPP100025	PONTOON	MOUNTING ARM, FRONT	J. Woo	01/07/04
GTPP100026	RACK	ROD	J. Woo	01/07/04
GTPP100027	PANEL, BODY	REAR	J. Woo	01/07/04
GTPP100028	RACK		J. Woo	01/07/04
GTPP100029	TIRE	REAR	J. Woo	01/07/04
GTPP100030	Part Name List	RING	J. Woo	01/07/04
GTPP100031	PONTOON	Isolid	J. Woo	01/07/04





System Requirements for Collaboration

CAD Start Part and "New Part" Labeling

Standard

Issues with Traditional Collaboration Methods

SE-mail item revisions

- Must contact appropriate team member(s)
- File size limitation
- Tracking latest version

SPhone conferences

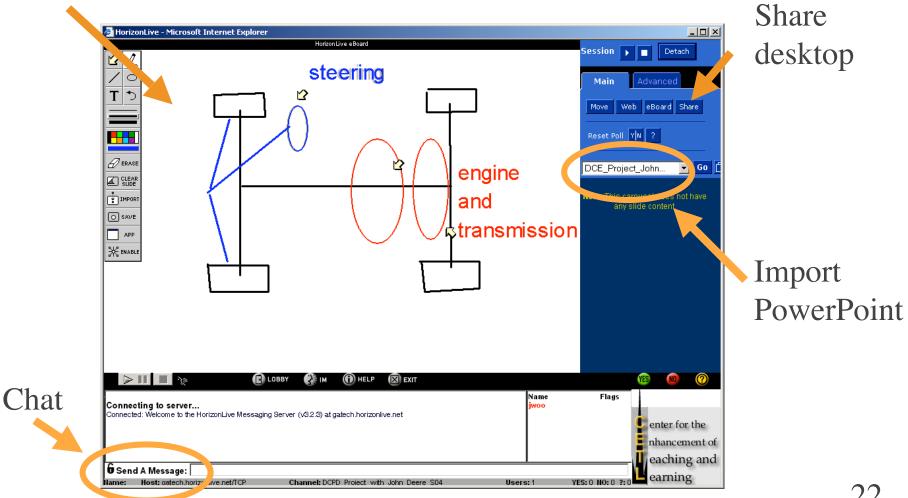
- Difficult to illustrate some concepts verbally
- A poor phone connection for one party may adversely affect the entire call

SFace to face Meetings

 May be constrained by location (costs time and money)

DCPD Collaboration Method

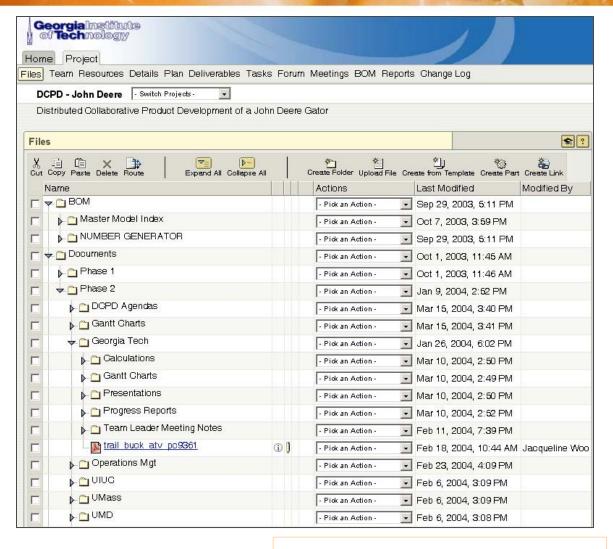
Weekly meetings conducted using Web Conferencing software


Individuals illustrate ideas on a virtual whiteboard for all team members to visualize

Phorizon**live**

- Individuals at different locations conduct presentations over the web
- Meetings recorded for future reference
- Share applications
- SVoice over IP (VOIP)

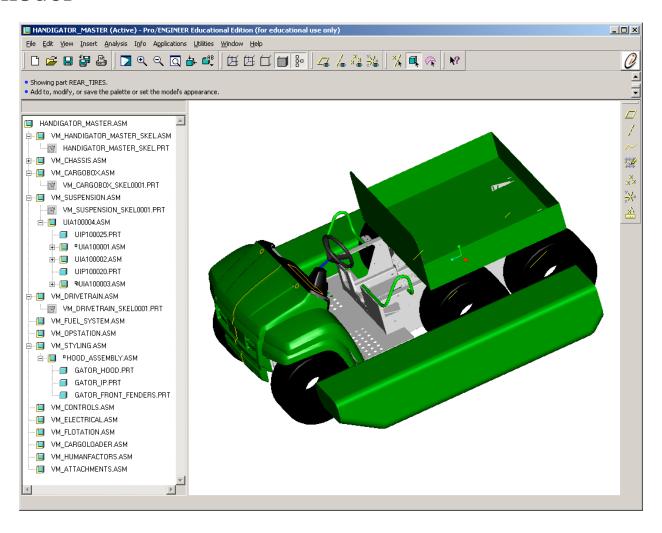
HorizonLive Interface



Product Lifecycle Management

Information shared via Product Lifecycle Management (PLM) solution from PTC

- S"Standard" web interface
- Scentralized web location where all information is organized
- Scross-Functional teams have access to all project information
- Limit access to sensitive information
- Lightweight CAD visualizer
- Share multi-CAD and non-CAD data
- SChange management


ProjectLink Portal at GT

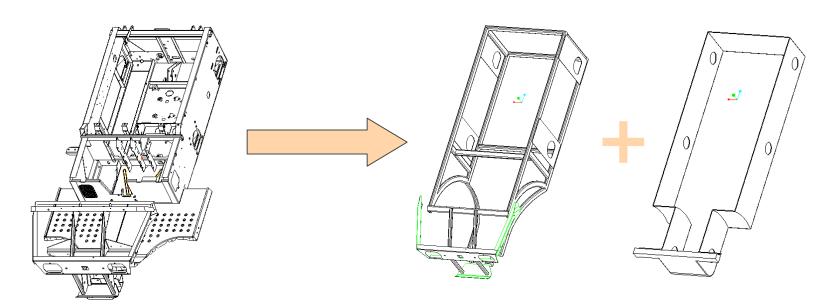
http://ptc.cad.gatech.edu

DCPD Mechanical Design Status (Phase 1)

CAD model

DCPD Mechanical Design Status (transition to Phase 2)

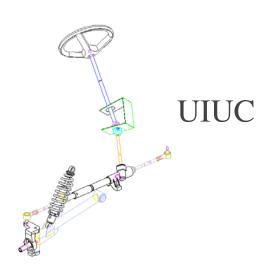
Vehicle analysis:

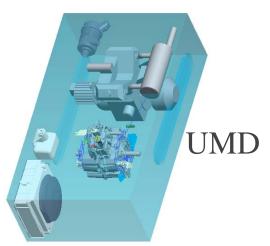

Reduce weight

Waterproofing

Flotation

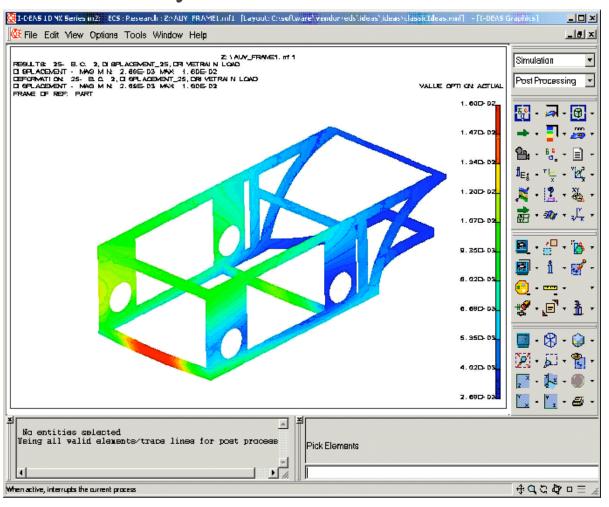
Propulsion


Steering



DCPD Mechanical Design Status (Phase 2)

CAD model



DCPD Mechanical Design Status (Phase 2)

Finite Element Analysis

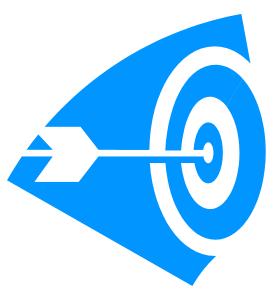
Benefits of DCPD

- Students of different disciplines collaborate towards a common goal
- Situations comparable to those encountered in business environments
- Students can collaborate without relocating
- Students become familiar with multiple aspects of product development
- S Participants can leverage resources not available locally

Traditional Academic Projects

Schools usually compete rather than collaborate

- Students teams lack multidisciplinary experience
- S Typically, class projects are limited to a max of 5 people



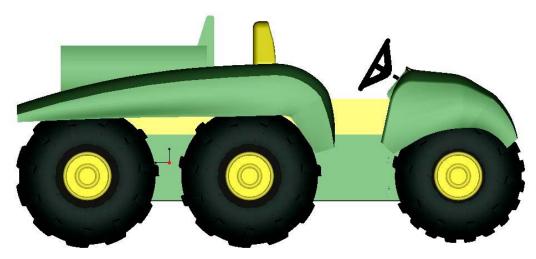
Most projects have a duration of one semester

Lessons Learned

How to make a successful project

- SActive professor involvement
- SEnvironment standardization
- Standardized training
- SWeekly meetings
- Shared goals
- SDefinite project objectives
- SEffective project management
- SIndustry participation

Future Plans


To complete product development process by 2005

Manufacturing simulation

S Assembly simulation

S Fabricate prototype

S Prepare business case

Questions

More details at http://ptc.cad.gatech.edu

Jacqueline Woo
Jacqueline CWoo@yahoo.com

Tord Dennis tord.dennis@coe.gatech.edu

Georgia Institute of Technology